Sunday, November 6, 2011

Climate and the Biogeochemical Cycles

                 Ecosystem services start at the most fundamental level: the creation of the air we breathe and the supply and distribution of water we drink. Through photosynthesis by bacteria, algae, plankton, and plants, atmospheric oxygen is mostly generated and maintained by ecosystems and their constituent species, allowing humans and innumerable other oxygen-dependent organisms to survive. Oxygen also enables the atmosphere to “clean” itself via the oxidation of
compounds such as carbon monoxide (Sodhi et al. 2007) and another form of oxygen in the ozone layer, protects life from the sun’s carcinogenic, ultraviolet (UV) rays. Global bio geochemical cycles consist of “the transport and transformation of substances in the environment through life, air, sea, land, and ice” (Alexander et al. 1997). 

                 Through these cycles, the planet’s climate, ecosystems, and creaturesare tightly linked. Changes in one component can have drastic effects on another, as exemplified by the effects of deforestation on climatic change (Phat et al. 2004). The hydrologic cycle is one that most immediately affects our lives and it is treated separately below. As carbon-based life forms, every single organism on our planet is a part of the global carbon cycle. This cycle takes place between the four main reservoirs of carbon: carbon dioxide (CO2) in the atmosphere; organic carbon compounds within organisms; dissolved carbon in water bodies; and carbon compounds inside the earth as part of soil, limestone (calcium carbonate), and buried organic matter like coal, natural gas, peat, and petroleum (Alexander et al. 1997). 

                 Plants play a major role in fixing atmospheric CO2 through photosynthesis and most terrestrial carbon storage occurs in forest trees (Falkowski et al. 2000). The global carbon cycle has been disturbed by about 13% compared to the pre-industrial era, as opposed to 100% or more for nitrogen, phosphorous, and sulfur cycles (Falkowski et al. 2000). Given the dominance of carbon in shaping life and in regulating climate, however, this perturbation has already been enough to lead to significant climate change with worse likely to come in the future [IPCC (Intergovernmental Panel on Climate Change) 2007]. Because gases like CO2, methane (CH4), and nitrous oxide (N2O) trap the sun’s heat, especially the long-wave infrared radiation that’s emitted by the warmed planet, the atmosphere creates a natural “greenhouse” (Houghton 2004). 

                Without this greenhouse effect, humans and most other organisms would be unable to survive, as the global mean surface temperature would drop from the current 14 C to –19 C (IPCC 2007). Ironically, the ever-rising consumption of fossil fuels during the industrial age and the resultant increasing emission of greenhouse gases have created the opposite problem, leading to an increase in the magnitude of the greenhouse effect and a consequent rise in global temperatures (IPCC 2007). Since 1750, atmospheric CO2 concentrations have increased by 34% (Millennium Ecosystem Assessment 2005a) and by the end of this century, average global temperature is projected to rise by
1.8 –6.4 C (IPCC 2007). Increasing deforestation and warming both exacerbate the problem as forest ecosystems switch from being major carbon sinks to being carbon sources (Phat et al. 2004; IPCC 2007). If fossil fuel consumption and deforestation continue unabated, global CO2 emissions are expected to be about 2–4 times higher than at present by the year 2100 (IPCC 2007). As climate and life have coevolved for billions of years and interact with each other through various feedback mechanisms (Schneider and Londer 1984), rapid climate change would have major consequences for the planet’s life-support systems. There are now plans under way for developed nations to finance the conservation of tropical forests in the developing world so that these forests can continue to provide the ecosystem service of acting as carbon sinks (Butler 2008). 

                 Changes in ecosystems affect nitrogen, phosphorus, and sulfur cycles as well (Alexander et al. 1997; Millennium Ecosystem Assessment 2005b; Vitousek et al. 1997). Although nitrogen in its gaseous form (N2) makes up 80% of the atmosphere, it is only made available to organisms through nitrogen fixation by cyanobacteria in aquatic systems and on land by bacteria and algae that live in the root nodules of lichens and legumes (Alexander et al. 1997). Eighty million tons of nitrogen every year are fixed artificially by industry to be used as fertilizer (Millennium Ecosystem Assessment 2005b). However, the excessive use of nitrogen fertilizers can lead to nutrient overload, eutrophication, and elimination of oxygen in water bodies. Nitrogen oxides, regularly produced as a result of fossil fuel combustion, are potent greenhouse gases that increase global warming and also lead to smog, breakdown of the ozone layer, and acid rain (Alexander et al. 1997). Similarly, although sulfur is an essential element in proteins, excessive sulfur emissions from human activities lead to sulfuric acid smog and acid rain that harms people and ecosystems alike (Alexander et al. 1997). Phosphorous (P) scarcity limits biological nitrogen fixation (Smith 1992). 

                In many terrestrial ecosystems, where P is scarce, specialized symbiotic fungi (mycorrhizae) facilitate P uptake by plants (Millennium Ecosystem Assessment 2005b). Even though P is among the least naturally available of major nutrients, use of phosphorous in artificial fertilizers and runoff from animal husbandry often also leads to eutrophication in aquatic systems (Millenium Ecosystem Assessment 2005b). The mining of phosphate deposits and their addition to terrestrial ecosystems as fertilizers represents a six fold increase over the natural rate of mobilization of P by the weathering of phosphate rock and by plant activity (Reeburgh 1997). P enters aquatic ecosystems mainly through erosion, but no-till agriculture and the use of hedgerows can substantially reduce the rate of this process (Millenium Ecosystem Assessment 2005a).

0 comments:

Post a Comment

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More